Computational complexity continuum within Ising formulation of NP problems
نویسندگان
چکیده
Abstract A promising approach to achieve computational supremacy over the classical von Neumann architecture explores and quantum hardware as Ising machines. The minimisation of Hamiltonian is known be NP-hard problem yet not all instances are equivalently hard optimise. Given that operational principles machines suited structure some problems but others, we propose identify computationally simple with an ‘optimisation simplicity criterion’. Neuromorphic architectures based on optical, photonic, electronic systems can naturally operate optimise satisfying this criterion, which therefore often chosen illustrate advantages new As example, show model Möbius ladder graph ‘easy’ for By rewiring random 3-regular graphs, probe intermediate complexity between P classes several numerical methods. Significant fractions polynomially further found a wide range small size models from spin glasses maximum cut problems. compelling distinguishing easy within same class starting point in developing standardised procedure performance evaluation emerging physical simulators physics-inspired algorithms.
منابع مشابه
Ising formulations of many NP problems
*Correspondence: Andrew Lucas, Lyman Laboratory of Physics, Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA e-mail: [email protected] We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp’s 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering, and satisfiability....
متن کاملComputational Complexity of Discrete Problems
This report documents the program and the outcomes of Dagstuhl Seminar 17121 “Computational Complexity of Discrete Problems”. The first section gives an overview of the topics covered and the organization of the meeting. Section 2 lists the talks given in alphabetical order. The last section contains the abstracts of the talks. Seminar March 19–24, 2017 – http://www.dagstuhl.de/17121 1998 ACM S...
متن کاملComputational Complexity of Holant Problems
We propose and explore a novel alternative framework to study the complexity of counting problems, called Holant problems. Compared to counting constraint satisfaction problems (#CSP), it is a refinement with a more explicit role for the constraint functions. Both graph homomorphism and #CSP can be viewed as special cases of Holant problems. We prove complexity dichotomy theorems in this framew...
متن کاملComputational Complexity of Dynamic Problems
This progress report surveys some of my scientiic work on part A of the Ph.D.-programme at the Computer Science Department of the University of Aarhus. I give a survey-like introduction to the eld of Complexity Theory to which my results bear relevance. I give a general account of my contributions to the eld, including the the Dynamic Transitive Closure Problem for spherical st-graphs, the Dyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications physics
سال: 2022
ISSN: ['2399-3650']
DOI: https://doi.org/10.1038/s42005-021-00792-0